Similarity-Based Pattern Analysis and Recognition
The pattern recognition and machine learning communities have, until recently, focused mainly on feature-vector representations, typically considering objects in isolation. However, this paradigm is being increasingly challenged by similarity-based approaches, which recognize the importance of relational and similarity information. This accessible text/reference … celý popis
Uloženo v:
Podrobná bibliografie
- Další autoři
- Typ dokumentu
- Knihy
- Fyzický popis
- 1 online zdroj (XIV, 291 p. 65 illus., 46 illus. in color.)
- Vydáno
-
London :
Springer London :
2013
- Vydání
- 1st ed. 2013
- Edice
- Advances in Computer Vision and Pattern Recognition,
- Témata
- ISBN
- 978-1-4471-5628-4
- Obsah
- Introduction -- Part I: Foundational Issues -- Non-Euclidean Dissimilarities -- SIMBAD -- Part II: Deriving Similarities for Non-vectorial Data -- On the Combination of Information Theoretic Kernels with Generative Embeddings -- Learning Similarities from Examples under the Evidence Accumulation Clustering Paradigm -- Part III: Embedding and Beyond -- Geometricity and Embedding -- Structure Preserving Embedding of Dissimilarity Data -- A Game-Theoretic Approach to Pairwise Clustering and Matching -- Part IV: Applications -- Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma -- Analysis of Brain Magnetic Resonance (MR) Scans for the Diagnosis of Mental Illness
Cíl | Odkaz | Zdroj odkazu |
---|---|---|
Web | Plný text | Národní technická knihovna |