Similarity-Based Pattern Analysis and Recognition

To chci

The pattern recognition and machine learning communities have, until recently, focused mainly on feature-vector representations, typically considering objects in isolation. However, this paradigm is being increasingly challenged by similarity-based approaches, which recognize the importance of relational and similarity information. This accessible text/reference celý popis

Uloženo v:

Podrobná bibliografie

Další autoři
Marcello Pelillo
SpringerLink (online služba)
Typ dokumentu
Knihy
Fyzický popis
1 online zdroj (XIV, 291 p. 65 illus., 46 illus. in color.)
Vydáno
London : Springer London : 2013
Vydání
1st ed. 2013
Edice
Advances in Computer Vision and Pattern Recognition,
Témata
ISBN
978-1-4471-5628-4
Obsah
Introduction -- Part I: Foundational Issues -- Non-Euclidean Dissimilarities -- SIMBAD -- Part II: Deriving Similarities for Non-vectorial Data -- On the Combination of Information Theoretic Kernels with Generative Embeddings -- Learning Similarities from Examples under the Evidence Accumulation Clustering Paradigm -- Part III: Embedding and Beyond -- Geometricity and Embedding -- Structure Preserving Embedding of Dissimilarity Data -- A Game-Theoretic Approach to Pairwise Clustering and Matching -- Part IV: Applications -- Automated Analysis of Tissue Micro-Array Images on the Example of Renal Cell Carcinoma -- Analysis of Brain Magnetic Resonance (MR) Scans for the Diagnosis of Mental Illness

Instituce:

Informace o knihovně

Cíl Odkaz Zdroj odkazu
Web Plný text Národní technická knihovna