Ještě jednou Saint-Exupéry

To chci

Odvození všech pythagorejských trojic, tzn. trojic přirozených čísel (x, y, z), pro která platí x + y = z . Formulace úlohy Saint-Exupéryho a její snadná i nesnadná řešení.

Uloženo v:

Podrobná bibliografie

Hlavní autor
Jindřich Bečvář, 1947-
Typ dokumentu
Články
Publikováno v
Učitel matematiky. -- ISSN 1210-9037. -- Roč. 4, č.3 (1995/96), s.150-154
Témata
Bibliografie
Lit.4

Instituce:


MARC

LEADER 00000naa-a2200000-a-4500
001 kpw1142395
003 CZ-PrNPK
005 20180824204233.4
007 ta
008 051214s1995----xr ||||||||||u0|0|||cze||
040 |a ABA012 
040 |b cze 
040 |e AACR2 
040 |9 1 
041 0 |a cze 
072 7 |2 Konspekt 
080 |a 372.851 
080 |a 371.321.5 
100 1 |4 aut  |a Bečvář, Jindřich,  |d 1947-  |7 jk01011293 
242 0 0 |a Once more Saint-Exupéry 
245 1 0 |a Ještě jednou Saint-Exupéry /  |c Jindřich Bečvář 
504 |a Lit.4 
520 |a Odvození všech pythagorejských trojic, tzn. trojic přirozených čísel (x, y, z), pro která platí x + y = z . Formulace úlohy Saint-Exupéryho a její snadná i nesnadná řešení. 
600 1 7 |a Pýthagorás ze Samu,  |d asi 580 př. Kr.-asi 500 př. Kr.  |7 jn20000701459 
650 7 |a matematika 
650 7 |a učivo 
650 7 |a výklad 
650 7 |a řešení úloh 
650 7 |a střední škola 
773 1 |t Učitel matematiky  |d Praha : Jednota českých matematiků a fyziků, 1994-  |x 1210-9037  |o CZ  |g Roč. 4, č.3 (1995/96), s.150-154  |9 1995/96 
910 |a ABA012  |t rs